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Abstract. In this paper, we study transport equations with nonlocal velocity fields with
rough initial data. We address the global existence of weak solutions of an one dimensional
model of the surface quasi-geostrophic equation and the incompressible porous media equa-
tion, and one dimensional and n dimensional models of the dissipative quasi-geostrophic
equations and the dissipative incompressible porous media equation.

1. Introduction

In this paper, we study several active scalar equations with nonlocal velocity fields. Here,
the non-locality means that the velocity field is defined through a singular integral operator
that is represented in terms of a Fourier multiplier. For example, in the two dimensional
Euler equation in vorticity form [6], the velocity is recovered from the vorticity ω through

u = ∇⊥(−∆)−1ω or equivalently û(ξ) =
iξ⊥

|ξ|2
ω̂(ξ). (1.1)

Other nonlocal and quadratically nonlinear equations appear in many applications. Prototyp-
ical examples are the surface quasi-geostrophic equation, the incompressible porous medium
equation, Stokes equations, magnetogeostrophic equation and their variants. We briefly in-
troduce the equations below.

The surface quasi-geostrophic equations. The surface quasi-geostrophic equation describes
the dynamics of the mixture of cold and hot air and the fronts between them in 2 dimensions
[23, 51]. The equation is of the form

θt + u · ∇θ = 0, u = (−R2θ,R1θ) , (1.2)

where the scalar function θ is the potential temperature and Rj is the Riesz transform

Rjf(x) =
1

2π
p.v.

∫
R2

(xj − yj)f(y)

|x− y|3
dy, j = 1, 2.

Similar model equations of (1.2) with different types of nonlocal velocities are proposed and
analyzed in [2], [9] and [19], respectively (see also [4, 10, 18, 40, 42, 49, 50]):

θt + u · ∇θ = 0, u = Rθ,
θt +∇ · (θRθ) = 0,

θt + u · ∇θ = 0, u = ∇⊥Λβ−2θ, 1 < β ≤ 2.

We finally introduce the two dimensional Euler-α model in vorticity form:

θt + u · ∇θ = 0, u = ∇⊥Λ−2+αθ, α ∈ [0, 1] (1.3)
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which interpolates between (1.1) (α = 0) and (1.2) (α = 1).

The incompressible porous medium equation. This equation takes the form [17]

θt + u · ∇θ = 0, u = R⊥R1θ, (1.4)

where θ is now the density of the incompressible fluid moving through a homogeneous porous
medium. The following version also has been studied with β > 0 [31]:

θt + u · ∇θ = 0, u = ΛβR⊥R1θ. (1.5)

Another important equation related to flow in porous media is the Stokes equation:

θt + u · ∇θ = 0, −∆u = −∇p− (0, θ)t, ∇ · u = 0, (1.6)

where the velocity field is given by

2D : u = (−∆)−1R⊥R1θ,

3D : u = (−∆)−1
(
−R1R3,−R2R3,R2

1 +R2
2

)
θ.

We also define the Stokes-α model

θt + u · ∇θ = 0, u = Λ2α−2R⊥R1θ (1.7)

which interpolates between (1.6) (α = 0) and (1.4) (α = 1).

Magnetogeostrophic equation. This equation is of the form

θt + u · ∇θ = 0, û(ξ) =

(
ξ2ξ3|ξ|2 − ξ1ξ

2
2ξ3,−ξ1ξ3|ξ|2 − ξ3

2ξ3, ξ
2
1ξ

2
2 + ξ4

2

)
|ξ|2ξ2

3 + ξ4
2

θ̂(ξ), (1.8)

where θ represents the buoyancy field. This model is proposed by Moffatt and Loper [47] as
a reduced model of the full magnetohydrodymics to study the geodynamo and turbulence in
the Earth’s fluid core [32, 33, 47].

Patch problems. There is a large (and growing) literature in a particular class of weak solution
with a patch type initial data:

θ0(x) = θ11Ω1 + θ21Rn\Ω1 ,

with θi positive constants. In the case of the surface quasi-geostrophic equation, these initial
data correspond to a sharp front between two different temperatures and they have obvious
interest in meteorology. For the incompressible porous medium equation this situation is
known as Muskat problem. This problem is of practical interest because it is a model of the
dynamics of the interface between two different fluids in oil wells or geothermal reservoirs.
We refer the readers to [5, 15, 16, 21, 26, 27, 34, 35, 36, 52] and references therein for more
details.

All the previous models are posed in two or three spatial dimensions. However, several
related one dimensional problems have been studied. The one dimensional reduction idea
was initiated by Constatin-Lax-Majda [22]; they proposed the following 1D model

ωt = ωHω
for the 3D Euler equation in the vorticity form and proved that ω blows up in finite time
under certain conditions. Motivated by this work, other similar models were proposed and
analyzed in the literature [1, 20, 25, 28, 48].

In this paper, we study an one dimensional model of the surface quasi-geostrophic equation
and incompressible porous media equation, and one dimensional and n dimensional models of



GLOBAL EXISTENCE FOR SOME TRANSPORT EQUATIONS WITH NONLOCAL VELOCITY 3

the dissipative quasi-geostrophic equations and the dissipative incompressible porous medium
equation in the periodic domain. We begin with the following one dimensional model

θt + (θHθ)x = 0, (1.9)

which is obtained by replacing the Riesz transforms by the Hilbert transform H in the diver-
gence form of (1.2) and (1.4). We note that (1.9) is also proposed as a model of dislocation
dynamics [29, 37, 38, 39] where θ is related to the density of fractures per length in the
material. Equation (1.9) and related models have been studied by different authors. In a
series of papers by A. Castro, D. Chae, A. Córdoba, D. Córdoba and M. Fontelos, the au-
thors addressed the well-posedness and finite time singularities [13, 14, 20, 25]. In particular,
A. Castro and D. Córdoba proved global well-posedness for positive L2 ∩ C0,γ , vanishing at
infinity data and finite time singularities for initial data such that θ0(x0) = 0 for some x0. J.
Carrillo, L. Ferreira, and J. Precioso in [11] proved the existence of solution corresponding
to initial data that are probability measures with finite second moment using gradient flows
tools.

We next consider a dissipative model of (1.9):

θt + (1− δ)Hθθx + δ(θHθ)x + νΛγθ = 0, 0 ≤ δ ≤ 1. (1.10)

We note that when ν = 0 and δ = 1, we return to (1.9). So, we can understand (1.9) as
the limiting case of (1.10). We note that there are several singularity formation results when
ν = 0: 0 < δ < 1/3 and δ = 1 [48], 0 < δ ≤ 1 [20], and δ = 0 [25, 43]. The case δ = −1 is
similar to the Kuramoto-Sivashinsky equation and it has been studied in [44].

Finally, we analyze two n− dimensional versions of (1.10). The first model is the equation
with δ > 0 and ν = 0:

θt + (1− δ)u · ∇θ + δ∇ · (θRθ) = 0, δ > 0. (1.11)

The second model is the equation with δ = 0 and ν > 0 which corresponds to the dissipative
quasi-geostrophic equation:

θt + u · ∇θ + νΛγθ = 0. (1.12)

Here, u in (1.11) and (1.12) is a divergence-free vector field u such that

û(k) = m(k)θ̂(k), k ·m(k) = 0, m ∈ L∞.
Compared with existing results showing global solutions or blowups in finite time with

smooth initial data, we establish several global existence of weak solutions with rough (L1+s, s >
0) initial data. To the best of our knowledge, the sharpest global existence result is for initial
data in Lp requires p > 4/3 [46]. To this end, we carefully choose dissipative quantities to
minimize conditions of initial data. These quantities have the same flavor as the Shannon
entropy ∫

θ log θdx.

For more applications of the entropy, see [7, 8, 12], where the authors apply these ideas
jointly with the logarithmic Hardy-Littlewood-Sobolev inequality to the parabolic-elliptic
Keller-Segel equation in the plane.

2. Preliminaries

In this paper, all constants will be denoted by C that is a generic constant depending only
on the quantities specified in the context.
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Hilbert Transform. The Hilbert transfom is defined as

Hf(x) =
1

2π
p.v.

∫
T

f(y)

tan ((x− y)/2)
dy.

We list several properties of the Hilbert transform in T.

H (Hf) = −f + 〈f〉, 〈f〉 =

∫
T
fdx,

(Hf)x = H(fx), 〈Hf〉 = 0

H (fHg + gHf) = (Hf) (Hg)− fg − 〈f〉〈g〉,∫
T

(Hf) gdx = −
∫
T
f (Hg) dx.

(2.1)

Function Spaces. The energy norms in Tn are defined as follows:

‖f‖2L2(Tn) =
∑
k∈Zn

∣∣∣f̂(k)
∣∣∣2 , ‖f‖2

Ḣs(Tn)
=

∑
k∈Zn\{0}

|k|2s
∣∣∣f̂(k)

∣∣∣2
‖f‖2Hs(Tn) =

∑
k∈Zn

(1 + |k|s)2
∣∣∣f̂(k)

∣∣∣2 . (2.2)

We also introduce the semi-norm

‖fx‖l1 :=
∑
k∈Z
|k|
∣∣∣f̂(k)

∣∣∣ ,
that is, the derivative is in the Wiener algebra of absolutely convergent Fourier series.

Operator Λγ. The differential operator Λγ = (
√
−∆)γ is defined by the action of the fol-

lowing kernels [24]:

Λγf(x) = cγ,np.v.

∫
Tn

f(x)− f(y)

|x− y|n+γ
dy + cγ,n

∑
k∈Zn\{0}

∫
Tn

f(x)− f(y)

|x− y + 2kπ|n+γ
dy, (2.3)

where cγ,n > 0 is a normalized constant. In particular, in one dimension with γ = 1,

Λf(x) = Hfx(x) =
1

2π
p.v.

∫
T

f(x)− f(y)

sin2 ((x− y)/2)
dy

Minimum Principle. In this paper, we assume that θ0 ≥ 0. It is well-known that this
property propagates for (1.9), (1.10), (1.11) and (1.12). Let us give a sketch of the proof
for (1.12) [20, 24]. (The same argument holds for (1.9), (1.10), (1.11).) Let’s assume that
θ(x, t) ∈ C1([0, T ]×Tn) and xt be a point such that m(t) = minx θ(x, t) = θ(xt, t). Since m(t)
is a continuous Lipschitz function, it is differentiable at almost every point t by Rademacher’s
theorem. Then, from the definition of Λγ and the non-negative assumption, we have

Λγθ(xt, t) = cγ,np.v.

∫
Tn

θ(xt)− θ(xt − y)

|y|n+γ
dy + cγ,n

∑
k∈Zn\{0}

∫
Tn

θ(xt)− θ(xt − y)

|y − 2kπ|n+γ
dy ≤ 0.

This implies that

m
′
(t) = −νΛγθ(xt, t) ≥ 0.

Therefore, we conclude that θ(t, x) ≥ 0 for all time. In the paper we will deal with weak
solution that are not continuous in general. However, for the regularized problems, θε, the
same argument works. Then we construct θ as the limit (in the appropriate space) of θε. As
the θ will be also the pointwise limit of θε, we conclude.
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Compactness. Since we look for weak solutions, we use following compactness arguments
when we pass to the limit in weak formulations.

Lemma 2.1 ([53]). Let X0, X,X1 be reflexive Banach spaces such that

X0 ⊂ X ⊂ X1,

where X0 is compactly embedded in X. Let T > 0 be a finite number and let α0 and α1 be
two finite numbers such that αi > 1. Then,

Y = {u ∈ Lα0 (0, T ;X0) , ∂tu ∈ Lα1 (0, T ;X1)}

is compactly embedded in Lα0 (0, T ;X).

Lemma 2.2 ([45]). Let Ω be a bounded set in Rn. Let (gε) and (hε) converge weakly to g
and h respectively in Lp1 (0, T ;Lp2(Ω)) and Lq1 (0, T ;Lq2(Ω)), with

1 ≤ p1, p2 ≤ ∞,
1

p1
+

1

q1
=

1

p2
+

1

q2
= 1.

Suppose that we have the following properties uniformly in ε > 0:

gεt is bounded in L1
(
0, T ;W−m,1(Ω)

)
for some m ≥ 0,

‖hε − hε(·+ y, t)‖Lq1 (0,T ;Lq2 (Ω)) → 0 as |y| → 0.
(2.4)

Then, (gεhε) converges to gh in the sense of distributions.

We note that the second condition in (2.4) holds when (hε) has positive regularity in space.

3. Statements of Results

3.1. 1D model of (1.2) and (1.4). We consider the equation (1.9) in T with non-negative
initial data. Since (1.9) satisfies the minimum principle, θ(t, x) ≥ 0 for all time. We notice
that (1.9) is dissipative: the entropy

E(θ) =

∫
T

[θ log θ − θ + 1] dx (3.1)

gains Ḣ1/2 regularity. Therefore, it is natural to assume that θ0 satisfies the following condi-
tions

θ0(x) ≥ 0, θ0(x) ∈ L1+s, s > 0, E(θ0) <∞, (3.2)

where we need the second condition to obtain a uniform bound of E(θε0) when we construct
an approximate sequence of solutions. We define the function space as follows:

AT =

{
θ ∈ L∞

(
0, T ;L1(T)

)
: sup

0≤t<T
E(θ(t)) +

∫ T

0

∥∥∥Λ1/2θ(t)
∥∥∥2

L2
dt <∞

}
. (3.3)

Definition 3.1. θ is a weak solution of (1.9) if θ ∈ AT and (1.9) holds in the sense of
distributions: for any ψ ∈ C∞c ([0, T )× T),∫ T

0

∫
T

[
θψt + θ (Hθ)ψx

]
dxdt =

∫
T
θ0(x)ψ(x, 0)dx for any T <∞.

Theorem 3.1. For any initial datum θ0 satisfying (3.2), there exists a weak solution of (1.9)
in AT for all T > 0.
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3.2. Dissipative 1D model. We first show the local well-posedness of (1.10) in H2(T) with
ν > 0 and δ = 0. Then, we continue to prove that the solution can be extended beyond T > 0
as long as ‖θx(t)‖L∞ is integrable in [0, T ]. The last condition can be achieved if ‖θ0x‖l1 is
sufficiently small. We note that H. Dong and A. Kiselev proved the global existence in the
critical case γ = 1 in [30] and [41], respectively. Therefore, we restrict ourselves to the case
0 < γ < 1 for the local well-posedness.

Theorem 3.2. Let ν > 0, δ = 0, and 0 < γ < 1. For any initial datum θ0 ∈ H2(T), there
exists T = T (θ0) > 0 such that there exists a unique solution of (1.10) θ ∈ C

(
0, T ;H2(T)

)
.

If ‖θ0x‖l1 < ν, we can take T =∞.

We recall that the local existence part in this theorem was proved in [30].
The second result is the global existence of a weak solution of (1.10). We note that the

additional term in the right-hand side of (1.10) depletes the nonlinear term (Hθ) θx when
δ ≥ 1

2 with a strictly positive lower bound of θ0. This enables us to show the existence of a
weak solution with ν ≥ 0. However, regularity of initial data prescribed below is relatively
higher than the usual L2 regularity in dissipative equations because (1.10) is not in the
divergence form. In this paper, we assume that initial data satisfy the following conditions:

θ0 ∈ H1/2(T), m0 = ess infx∈Tθ0(x) > 0. (3.4)

Definition 3.2. θ is a weak solution of (1.10) with θ0 ∈ H1/2(T) if θ(t) ∈ H1/2(T) for any
t ≤ T and (1.10) holds in the sense of distributions: for any ψ ∈ C∞c ([0, T )× T),∫ T

0

∫
T

[
θψt − (1− δ)Hθθxψ − νθΛγψ + δθHθψx

]
dxdt =

∫
T
θ0(x)ψ(x, 0)dx for any T <∞.

Theorem 3.3. Let ν ≥ 0, γ ≥ 0 and 1/2 ≤ δ < 1. For any initial datum θ0 satisfying (3.4),
there exists a global weak solution of (1.10) such that

θ ∈ L∞
(

0,∞;H1/2(T)
)
∩ L2

(
0,∞;Hmax{1,(1+γ)/2}(T)

)
.

Moreover, such a solution is unique in L2(T) if ν > 0 and γ ≥ 2.

3.3. High dimensional model. We finally consider the equation (1.11) and (1.12) in Tn,
n = 2, 3, with a divergence-free vector field u satisfying

û(k) = m(k)θ̂(k), k ·m(k) = 0, m ∈ L∞. (3.5)

We begin with the equation (1.11). We use the n-dimensional version of the entropy (3.1)
and functional space (3.3). This is due to the fact that the advection term vanishes in the
computation of E(θ)t by the divergence-free condition of u.

Definition 3.3. θ is a weak solution of (1.11) if θ ∈ AT and (1.11) holds in the sense of
distributions: for any ψ ∈ C∞c ([0, T )× Tn)∫ T

0

∫
Tn

[
θψt + (1− δ)θu · ∇ψ + δθRθ · ∇ψ

]
dxdt =

∫
Tn
θ(x, 0)ψ(x, 0)dx for every T <∞.

Theorem 3.4. For any initial datum θ0 satisfying (3.2), there exists a weak solution of
(1.11) in AT for all T > 0.

We note that the same result holds for a smoother velocity field:

û(k) = |k|βm(k)θ̂(k), k ·m(k) = 0, m(0) = 0 (3.6)

with bounded m and β < 0. We note that u in (3.6) covers (1.3), (1.6) and (1.7).
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Corollary 3.5. For any initial datum θ0 satisfying (3.2) and u given by (3.6), there exists
a weak solution of (1.11) in AT for every T > 0.

We finally deal with the equation (1.12) with a slightly different entropy

E(θ) =

∫
Tn

(θ + 1) log(θ + 1)dx.

Due to the lack of the smoothing effect from ∇·(θRθ), we only have bounds of θ for t ≥ τ > 0.
Therefore, we define the function space and the notion of weak solution as follows.

BT =

{
θ ∈ L∞

(
0, T ;L1 (Tn)

)
∩ L∞ ([τ, T );L∞ (Tn)) :

sup
τ≤t<T

E(θ(t)) +

∫ T

τ

∥∥∥Λγ/2θ(t)
∥∥∥2

L2
dt <∞

}
.

(3.7)

Definition 3.4. θ is a weak solution of (1.12) if θ ∈ BT and (1.11) holds in the sense of
distributions: for any ψ ∈ C∞c ([τ, T )× Tn)∫ T

τ

∫
Tn

[
θψt + θu · ∇ψ + νθΛγψ

]
dxdt = 0 for every 0 < τ < T <∞.

Theorem 3.6. For any initial datum θ0 satisfying (3.2), there exists a weak solution of
(1.12) in BT for every T > 0. Moreover, θ(t) converges to θ0 in H−2(Tn) as t→ 0.

Remark 1. Actually, following the ideas in the proof of Theorem 3.6, we can prove that the
solution θ in Theorems 3.1-3.6 is in L∞(τ, T ;L∞(Tn)) for every 0 < τ < T <∞.

The proofs of our results are outlined as follows. We first obtain a priori estimates in given
function spaces. We then generate approximate sequence of solutions and pass to the limits
in weak formulation using Lemma 2.1 or 2.2.

4. Proof of Theorem 3.1

We consider the equation (1.9)

θt + (θHθ)x = 0

and the entropy

E(θ) =

∫
T

[θ log θ − θ + 1] dx.

Since θ(t) ≥ 0, E(θ) ≥ 0. Moreover, the direct computation yields that

d

dt
E(θ) =

∫
T

[θt log θ(t) + θ(t)(log θ(t))t − θt] dx =

∫
T
θt log θ(t)dx

= −
∫
T

(θHθ)x log θdx =

∫
T

(Hθ) θxdx = −
∫
T
θΛθdx = −

∥∥∥Λ1/2θ
∥∥∥2

L2
.

(4.1)

Therefore, we have θ ∈ A. We now construct a sequence of solutions (θε) by solving

θεt + (θεHθε)x = εθεxx, θε0 = ρε ∗ θ0,

where ρε is a standard mollifier. Then, θε satisfies that

d

dt
E(θε) +

∥∥∥Λ1/2θε
∥∥∥2

L2
+ 4ε

∫
T

∣∣∣(√θε)
x

∣∣∣2 dx = 0. (4.2)
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Integrating (4.2) in time, we have

E(θε(t)) +

∫ t

0

∥∥∥Λ1/2θε(s)
∥∥∥2

L2
ds+ 4ε

∫ t

0

∫
T

∣∣∣(√θε(s))
x

∣∣∣2 dxds = E(θε0). (4.3)

Since x log x− x+ 1 ≤ xs+1 + 1 for x ≥ 0, we can bound the last term in (4.3) as

E(θε0) ≤ 2π + ‖θε0‖
s+1
Ls+1 ≤ 2π + ‖θ0‖s+1

Ls+1 .

Therefore, the sequence (θε) is uniformly bounded in AT . By Poincaré’s inequality, we

obtain uniform bounds of θε and Hθε in L2
(
(0, T );H1/2(T)

)
. Moreover, by interpolat-

ing L∞
(
0, T ;L1(T)

)
and L2

(
(0, T );H1/2(T)

)
, we have uniform bounds of θε and Hθε in

L4
(
0, T ;L2(T)

)
. These estimates and the duality pairing imply that

θεt = − (θεHθε)x + εθεxx ∈ L2
(
0, T ;H−2(T)

)
uniformly in ε > 0. Lemma 2.1 with

X0 = L2
(

0, T ;H1/2(T)
)
, X = L2

(
0, T ;L2(T)

)
, X1 = L2

(
0, T ;H−2(T)

)
,

allows to pass to the limit in∫ T

0

∫
T

[
θεψt + θε (Hθε)ψx

]
dxdt =

∫
T
θε0(x)ψ(x, 0)dx

to obtain a weak solution in AT .

5. Proof of Theorem 3.2

5.1. Local Well-posedness. We consider the equation (1.10) with δ = 0:

θt + (Hθ) θx + νΛγθ = 0, ν > 0, γ > 0. (5.1)

We here only provide a priori estimates. We first multiply (5.1) by θ and integrate over T:

1

2

d

dt
‖θ‖2L2 + ν

∥∥∥Λ
γ
2 θ
∥∥∥2

L2
= −

∫
T

[
(Hθ) θxθ

]
dx ≤ ‖θx‖L∞ ‖Hθ‖L2 ‖θ‖L2 ≤ ‖θx‖L∞‖θ‖2L2 .

We next take ∂x to (5.1) and do the energy estimate.

1

2

d

dt
‖θx‖2L2 + ν

∥∥∥Λ
γ
2 θx

∥∥∥2

L2
= −

∫
T

(Hθθx)x θxdx = −
∫
T

(Hθ)x (θx)2 dx−
∫
T
Hθθxxθxdx

= −
∫
T

(Hθ)x (θx)2 dx− 1

2

∫
T
Hθ
[
(θx)2

]
x
dx = −1

2

∫
T

(Hθ)x (θx)2 dx

≤ ‖θx‖L∞ ‖Hθx‖L2 ‖θx‖L2 ≤ ‖θx‖L∞‖θx‖2.
Similarly, by taking ∂xx to (5.1), we have

1

2

d

dt
‖θxx‖2L2 + ν

∥∥∥Λ
γ
2 θxx

∥∥∥2

L2
≤ (‖θx‖L∞ + ‖Hθx‖L∞) ‖θxx‖2L2 .

Therefore, we obtain that

d

dt
‖θ‖2H2 + ν

∥∥∥Λ
γ
2 θ
∥∥∥2

H2
≤ C (‖θx‖L∞ + ‖Hθx‖L∞) ‖θ‖2H2 . (5.2)

Since ‖θx‖L∞ + ‖Hθx‖L∞ ≤ C‖θ‖H2 , (5.2) implies the local well-posedenss in H2(T). More-
over, by integrating (5.2) in time, we obtain that

‖θ(t)‖2H2 ≤ C ‖θ0‖2H2 exp

∫ t

0
C
(
‖θx(s)‖L∞ + ‖Hθx(s)‖L∞

)
ds.
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Using the logarithmic bound (similar to the Beale-Kato-Majda criterion [3])

‖Hθx‖L∞ ≤ C(1 + ‖θx‖L∞ log(e+ ‖θ‖H2) + ‖θx‖L2),

the solution can be continued as long as we can control ‖θx‖L∞ .

5.2. Estimation of ‖θx‖l1. We now control ‖θx‖L∞ by ‖θx‖l1 . For k ∈ Z,

|k|
∣∣∣θ̂(k)

∣∣∣
t

= −ν|k|1+γ
∣∣∣θ̂(k)

∣∣∣− θ̂(k)∣∣∣θ̂(k)
∣∣∣ |k|

∑
l∈Z

[
ilθ̂(l)

i(k − l)
|k − l|

θ̂(k − l)
]

≤ −ν|k|1+γ
∣∣∣θ̂(k)

∣∣∣+ |k|
∑
l∈Z

∣∣∣θ̂(k − l)∣∣∣ |l| ∣∣∣θ̂(l)∣∣∣ .
By taking the summation over k ∈ Z,

d

dt
‖θx‖l1 ≤ −ν

∑
k∈Z
|k|1+γ

∣∣∣θ̂(k)
∣∣∣+
∑
k∈Z

∑
l∈Z
|k||l|

∣∣∣θ̂(l)∣∣∣ ∣∣∣θ̂(k − l)∣∣∣
= −ν

∑
k∈Z
|k|1+γ

∣∣∣θ̂(k)
∣∣∣+
∑
l∈Z
|l|
∣∣∣θ̂(l)∣∣∣∑

k∈Z
|k|
∣∣∣θ̂(k − l)∣∣∣

≤ −ν
∥∥Λ1+γθ

∥∥
l1

+ ‖θx‖2l1 ≤ ‖θx‖l1 (‖θx‖l1 − ν) .

Therefore, ‖θx(t)‖l1 < ν as long as ‖θ0,x‖l1 < ν. This completes the proof.

6. Proof of Theorem 3.3

We consider the equation (1.10) which is equivalent to

θt + (Hθ) θx + νΛγθ + δθΛθ = 0, ν ≥ 0, γ ≥ 0, 1/2 ≤ δ < 1. (6.1)

We begin with a priori estimates. To obtain the L2 bound, we multiply (6.1) by θ and
integrate over T:

1

2

d

dt
‖θ‖2L2 + ν

∥∥∥Λγ/2θ
∥∥∥2

L2
= −

∫
T

[(Hθ) θxθ] dx− δ
∫
T

[
θ2Λθ

]
dx

= −1

2

∫
T

[
(Hθ)

(
θ2
)
x

]
dx− δ

∫
T

[
θ2Λθ

]
dx =

(
1

2
− δ
)∫

T

[
θ2Λθ

]
dx.

Since θ ≥ 0, we have∫
T

[
θ2Λθ

]
dx =

∫
T

∫
T

(θ(x)− θ(y))2

sin2 ((x− y)/2)
· θ(x) + θ(y)

2
dxdy ≥ 0.

Therefore, we obtain that

1

2

d

dt
‖θ‖2L2 + ν

∥∥∥Λγ/2θ
∥∥∥2

L2
≤ 0. (6.2)

We next obtain the Ḣ1/2 bound. We multiply (6.1) by Λθ and integrate over T:

1

2

d

dt

∥∥∥Λ1/2θ
∥∥∥2

L2
+ ν

∥∥∥Λ(1+γ)/2θ
∥∥∥2

L2
= −

∫
T

[
(Hθ) θxΛθ

]
dx− δ

∫
T

[
θ (Λθ)2

]
dx. (6.3)

We now compute the first integral in the right-hand side of (6.3). Since

−
∫
T

[(Hθ) θxΛθ] dx =

∫
T

[θH (θx (Hθx))] dx =
1

2

∫
T

[
θ
(

(Λθ)2 − (θx)2
)]
dx,
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we have

1

2

d

dt

∥∥∥Λ1/2θ
∥∥∥2

L2
+ ν

∥∥∥Λ(1+γ)/2θ
∥∥∥2

L2
=

(
1

2
− δ
)∫

T

[
θ (Λθ)2

]
dx− 1

2

∫
T

[
θ (θx)2

]
dx,

which implies that

1

2

d

dt

∥∥∥Λ1/2θ
∥∥∥2

L2
+ ν

∥∥∥Λ(1+γ)/2θ
∥∥∥2

L2
+

1

2

∫
T

[
θ (θx)2

]
dx ≤ 0. (6.4)

We note that the minimum principle, with m0 > 0, implies that θ(t, x) ≥ m0 > 0 for all time.
Therefore, by (6.2), (6.4), we obtain that

1

2

d

dt
‖θ‖2H1/2 + ν

∥∥∥Λγ/2θ
∥∥∥2

H1/2
+

1

2
m0 ‖θx‖2L2 ≤ 0. (6.5)

Integrating (6.5) in time, we conclude that

θ ∈ L∞
(

0,∞;H1/2(T)
)
∩ L2

(
0,∞; Ḣ1(T)

)
, Λγ/2θ ∈ L2

(
0,∞;H1/2(T)

)
. (6.6)

We now construct an approximate sequence of solutions (θε) by solving

θt + (Hθ) θx + Λγθ = −δθΛθ + εθxx, θε0 = ρε ∗ θ0.

Then, (θε) is uniformly bounded in the space stated in (6.6). By interpolating L∞
(
0, T ;H1/2(T)

)
and L2

(
0, T ;H1(T)

)
, we have uniform bounds of Hθε and θε in L4

(
0, T ;H3/4(T)

)
that is

embedded in L4
(
0, T ;L2(T)

)
. This implies that

(Hθε) θεx ∈ L4/3
(
0, T ;L1(T)

)
, θεΛθε ∈ L4/3

(
0, T ;L1(T)

)
uniformly in ε > 0. Therefore, we obtain that

θεxt = −
(

(Hθε) θεx − Λγθε + δθεΛθε + εθεxx

)
x
∈ L4/3

(
0, T ;W−2,1(T)

)
.

Similarly,

Λθεt ∈ L4/3
(
0, T ;W−2,1(T)

)
.

Moreover, by Sobolev embedding

L2
(
0, T ;H1(T)

)
⊂ L2 (0, T ;Cα(T)) , 0 < α < 1/2,

we have

‖θε(·)− θε(·+ y)‖L2(0,T ;L2(T)) ≤ C(θ0)|y|α → 0 as |y| → 0.

Similarly,

‖Hθε(·)−Hθε(·+ y)‖L2(0,T ;L2(T)) → 0 as |y| → 0.

Therefore, Lemma 2.2 with

qi = pi = 2, gε = θεx, Λθε, hε = Hθε, θε

allows to pass to the limit in∫ ∞
0

∫
T

[θεt + (Hθε) θεx + Λγθε + δθεΛθε]ψdxdt =

∫
T
θε0(x)ψ(x, 0)dx

to obtain a weak solution in the space stated in (6.6).
To show the uniqueness of a solution, let θ = θ1 − θ2. Then, θ satisfies

θt + νΛγθ = − (Hθ) θ1x − (Hθ2) θx − δθΛθ1 − δθ2Λθ, θ(0, x) = 0. (6.7)
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We multiply θ to (6.7) and integrate over T. Then,

1

2

d

dt
‖θ‖2L2 + ν

∥∥∥Λ
γ
2 θ
∥∥∥2

L2
=

∫
T

[− (Hθ) θ1x − (Hθ2) θx − δθΛθ1 − δθ2Λθ] θdx

= I+II+III+IV.

We first estimate II +IV:

II +IV ≤ C (‖θ2‖L∞ + ‖Hθ2‖L∞) ‖θ‖L2 ‖θx‖L2

≤ C(ν)
(
‖θ2‖2L∞ + ‖Hθ2‖2L∞

)
‖θ‖2L2 +

ν

4
‖θx‖2L2 .

To estimate I, we do the integration by parts to obtain

I ≤ C ‖θ1‖L∞ ‖θ‖L2 ‖θx‖L2 ≤
ν

8
‖θx‖2L2 + C(ν) ‖θ1‖2L∞ ‖θ‖

2
L2 .

To estimate III, we use Λθ1 = (Hθ1)x and do the integration by parts to obtain

III ≤ C ‖Hθ1‖L∞ ‖θ‖L2 ‖θx‖L2 ≤
ν

8
‖θx‖2L2 + C(ν) ‖Hθ1‖2L∞ ‖θ‖

2
L2 .

Since

‖θx‖L2 ≤
∥∥∥Λγ/2θ

∥∥∥
L2
, ‖θi‖L∞ + ‖Hθi‖L∞ ≤ C ‖θi‖H1 , for i = 1, 2,

we conclude that
d

dt
‖θ‖2L2 ≤ C(ν)

(
‖θ1‖2H1 + ‖θ2‖2H1

)
‖θ‖2L2 (6.8)

which implies that θ = 0 in L2.

7. Proof of Theorem 3.4 and Corollary 3.5

Proof of Theorem 3.4. We consider the equation (1.11):

θt + (1− δ)u · ∇θ + δ∇ · (θRθ) = 0.

As the equation (1.9), the entropy (3.1) satisfies that

d

dt
E(θ) =

∫
Tn
θt log θdx =

∫
Tn

((1− δ)u+ δRθ) · ∇θdx = −δ
∥∥∥Λ1/2θ

∥∥∥2

L2
.

Therefore, we have θ ∈ A. We now construct a sequence of solutions (θε) by solving

θεt + (1− δ)uε · ∇θε + δ∇ · (θεRθε) = ε∆θε, θε0 = ρε ∗ θ0.

Then, (θε) satisfies that

d

dt
E(θε) +

∥∥∥Λ1/2θε
∥∥∥2

L2
+ 4ε

∫
Tn

∣∣∣∇(√θε)∣∣∣2 dx = 0. (7.1)

Integrating (7.1) in time,

E(θε(t)) +

∫ t

0

∥∥∥Λ1/2θε(s)
∥∥∥2

L2
ds+ 4ε

∫ t

0

∫
Tn

∣∣∣∇(√θε(s))∣∣∣2 dxds ≤ E(θε0). (7.2)

Since x log x− x+ 1 ≤ xs+1 + 1 for x ≥ 0, we can bound the last term in (7.2) by

E(θε0) ≤ (2π)n + ‖θε0‖
s+1
Ls+1 .

Therefore, the sequence (θε) is uniformly bounded in AT . Using this bound, we first treat
the two dimensional case. From Sobolev embedding, we have uniform bounds

Rθε, uε, θε ∈ L2
(
0, T ;L4(T2)

)
.
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Moreover, by interpolating L∞
(
0, T ;L1(T2)

)
and L2

(
0, T ;L4(T2)

)
, we have uniform bounds

Rθε, uε, θε ∈ L6
(

0, T ;L4/3(T2)
)
.

This implies that

uεθε, θεRθε ∈ L3/2
(
0, T ;L1(T2)

)
and thus

θεt ∈ L3/2
(
0, T ;H−2(T2)

)
.

Using Lemma 2.1 with

X0 = L2
(

0, T ;H1/2(T2)
)
, X = L2

(
0, T ;L2(T2)

)
, X1 = L3/2

(
0, T ;H−2(T2)

)
we can pass to the limit in the weak formulation to obtain a weak solution in AT . Similarly,
in three dimensions, we have

uεθε, θεRθε ∈ L4/3
(
0, T ;L1(T3)

)
, θεt ∈ L4/3

(
0, T ;H−2(T3)

)
.

Using Lemma 2.1 with

X0 = L2
(

0, T ;H1/2(T3)
)
, X = L2

(
0, T ;L2(T3)

)
, X1 = L4/32

(
0, T ;H−2(T3)

)
,

we complete the proof of Theorem 3.4.

Proof of Corollary 3.5. We notice that the hypothesis m(0) = 0 together with θε ∈
L2
(
(0, T );H1/2(Tn)

)
implies uε ∈ L2

(
(0, T );H1/2+s(Tn)

)
for some s > 0. This is enough to

follow the argument in the proof of Theorem 3.4 to complete the proof of Corollary 3.5.

8. Proof of Theorem 3.6

We finally consider the equation

θt + u · ∇θ + νΛγθ = 0

with the following entropy

E(θ) =

∫
Tn

(θ + 1) log(θ + 1)dx.

Since θ ≥ 0, we have E(θ) ≥ 0. Let’s start with the a priori estimates. The direct computa-
tion yields that

d

dt
E(θ) = −ν

∫
Tn

(Λγθ) log(θ + 1)dx. (8.1)

To estimate the right hand side of (8.1) we symmetrize the integral using the representation
of Λγ (2.3):

d

dt
E(θ) +

cγ,nν

2

∑
k∈Zn

∫
Tn

∫
Tn

θ(x)− θ(y)

|x− y + 2kπ|n+γ
log

[
θ(x) + 1

θ(y) + 1

]
dydx = 0.

Since (X − Y )(logX − log Y ) ≥ C(logX − log Y )2 for X ≥ 1 and Y ≥ 1, we obtain

d

dt
E(θ) + C(ν, γ, n)

∥∥∥Λγ/2 log(θ + 1)
∥∥∥2

L2
≤ 0.
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To obtain the diffusion, we compute

c(γ, n, ν)
∑
k∈Zn

∫
Tn

∫
Tn

(θ(x)− θ(y))2

|x− y + 2kπ|n+γ

(log(1 + θ(x))− log(1 + θ(y)))2

(θ(x)− θ(y))2
dydx

≥ c(γ, n, ν)

1 + ‖θ0‖2L∞
‖Λγ/2θ‖2L2 .

This implies that

E(θ(t)) +
c(γ, n, ν)

1 + ‖θ0‖2L∞
‖Λγ/2θ‖2L2 ≤ E(θ0) ≤ (2π)n + ‖θ0‖s+1

Ls+1

for all t > 0 and thus we conclude θ ∈ BT from (8.1). We now construct a sequence of
solutions (θε) by solving

θεt + uε · ∇θε + νΛγθε = ε∆θε, θε0 = ρε ∗ θ0.

For such a solution, the following inequality holds:

‖θε(t)‖L1(Tn) = ‖θε0‖L1(Tn) ≤ ‖θ0‖L1(Tn).

Since θε(t) is smooth (in space and time), the function ‖θε(t)‖L∞(Tn) = θε(xt) is Lipschitz.
Using Rademacher Theorem, we conclude that θ(xt) is differentiable almost everywhere. For
each t, let xt be the point of maximum. Then,

d

dt
‖θε(t)‖L∞(Tn) = ∂tθ

ε(xt).

We now estimate nonlocal terms. We take a positive number 0 < r < π and define

U1 = {η ∈ [−r, r]n : θε(xt)− θε(xt − η) > θε(xt)/2} ,
and U2 = [−r, r]n \ U1. Then, we have

‖θ0‖L1(Tn) ≥ ‖θε0‖L1(Tn) =

∫
Tn
θε(xt − η)dη ≥

∫
U2
θε(xt − η)dη ≥ θε(xt)

2
|U2|

or equivalently,

(2r)n −
2‖θ0‖L1(Tn)

θε(xt)
≤ (2r)n − |U2| = |U1| .

This implies that

1

cγ,n
Λγθε(xt) ≥ P.V.

∫
Tn

θε(xt)− θε(xt − y)

|y|n+γ
dy ≥

∫
U1

θε(xt)− θε(xt − y)

|y|n+γ
dy

≥ θε(xt)

2rn+γ
|U1| ≥

θε(xt)

rn+γ

(
2n−1rn −

‖θ0‖L1(Tn)

θε(xt)

)
.

We now choose r as follows:

r =

(
1

2n−2

‖θ0‖L1(Tn)

θε(xt)

)1/n

.

We assume r ≤ π for the moment. In this case, we obtain that

1

cγ,n
Λγθε(xt) ≥

‖θ0‖L1(Tn)(
1

2n−2

‖θ0‖L1(Tn)

θε(xt)

)1+γ/n
.
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This bound implies that

d

dt
‖θε(t)‖L∞(Tn) ≤ −νcγ,nΛγθε(xt) + ε∆θε ≤ −νcγ,n

‖θε(t)‖1+γ/n
L∞(Tn)

‖θ0‖γ/nL1(Tn)

,

or equivalently,

‖θε(t)‖L∞(Tn) ≤

 νcγ,n

‖θ0‖γ/nL1(Tn)

γt+
1

‖θε0‖
γ
L∞

−1/γ

≤
‖θ0‖1/nL1(Tn)

(C(ν, γ, n))1/γ
t−1/γ .

If r is bigger than π,

1

2n−2πn
‖θ0‖L1(Tn) > ‖θε(t)‖L∞(Tn).

As a consequence, for t > 0, we have

‖θε(t)‖L∞(Tn) ≤ max

 ‖θ0‖1/nL1(Tn)

(C(ν, γ, n))1/γ
t−1/γ ,

1

2n−2πn
‖θ0‖L1(Tn)

 .

In particular, for t ≥ τ ,

‖θε(t)‖L∞(Tn) ≤ max

 ‖θ0‖1/nL1(Tn)

(νCγ,nγ)1/γ
τ−1/γ ,

1

2n−2πn
‖θ0‖L1(Tn)

 =: C(τ, ν, γ, n, γ). (8.2)

Then, (θε) is uniformly bounded in BT . Following the proof of Theorem 3.1, we obtain a
weak solution θ in BT . Since

θεt = −uε · ∇θε − νΛγθε + ε∆θε ∈ L2
(
0, T ;H−2(Tn)

)
uniformly in ε > 0, we have

θε ∈ C
(
0, T ;H−2(T)

)
.

Therefore, we recover θ0 in H−2(Tn).

9. Appendix

9.1. Lyapunov functions. For the equation (1.9), we have two additional Lyapunov func-
tions defined in terms of

− Λ−1θ =
1

π

∫
T

log

∣∣∣∣sin(x− y2

)∣∣∣∣ θ(y)dy. (9.1)

When θ0 ≥ 0, by the minimum principle, −Λ−1θ ≤ 0. The first Lyapunov function is

L1(θ) =

∫
T

[
θ
(
log
∣∣Λ−1θ

∣∣)+M
]
dx, M = ‖θ0‖L∞

∥∥log
∣∣Λ−1θ0

∣∣∥∥
L∞

, (9.2)
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where we add M to make L1(θ) to be non-negative. We show that L1(θ) is decreasing in
time using the fact −Λ−1fx = Hf :

d

dt
L1(θ) =

∫
T

[
θt log

∣∣Λ−1θ
∣∣] dx+

∫
T

[
θ
(
log
∣∣Λ−1θ

∣∣)
t

]
dx

=

∫
T

[
(θHθ)

(
log
∣∣Λ−1θ

∣∣)
x

]
dx+

∫
T

[
θΛ−1θt
Λ−1θ

]
dx =

∫
T

[
−θ (Hθ)2

Λ−1θ
+
θH (θHθ)

Λ−1θ

]
dx

= −1

2

∫
T

[
θ

Λ−1θ

(
(Hθ)2 + (θ)2 + 〈θ〉2

)]
dx ≤ 0.

The second Lyapunov function is

L2(θ) =

∫
T

[
θeΛ−1θ

]
dx. (9.3)

We show that L2(θ) is exponentially decreasing in time:

d

dt
L2(θ) =

∫
T

[
θte

Λ−1θ
]
dx+

∫
T

[
θ
(
eΛ−1θ

)
t

]
dx

=

∫
T

[
(θHθ)

(
eΛ−1θ

)
x

]
dx+

∫
T

[
θeΛ−1θH (θHθ)

]
dx

= −
∫
T

[
θ (Hθ)2 eΛ−1θ

]
dx+

1

2

∫
T

[
θeΛ−1θ

(
(Hθ)2 − θ2 − 〈θ〉2

)]
dx

= −1

2

∫
T

[
θeΛ−1θ

(
(Hθ)2 + θ2

)]
dx− 〈θ0〉2

2
L,

where we use 〈θ〉 = 〈θ0〉. Therefore,

L2(θ) ≤ e−
〈θ0〉

2

2
t

∫
T

[
θ0e

Λ−1θ0
]
dx. (9.4)

We note that the bound of L2 implies the bound of θ in Ḣ−1/2(T):

‖θ(t)‖Ḣ−1/2(T) ≤
∫
T
θ
(
1 + Λ−1θ

)
dx ≤ L2(θ) < C(θ0).
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